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LETTER TO THE EDITOR 

A q-Heisenberg algebra and a contact metric structure 
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Department of Physics, Jeonju University, 1200 Hyojad Chonju, Chonbuk, 560-759, Korea 

Received 18 February 1993 

Abstmct The actions for two q-Heisenberg algebras are eoktructedby extending a contact 
metric structure of a Heirenberg group manifold to the corresponding line bundle. We 
obtain the g-Heisenberg algebras under a canonical quantization and regularization. Also 
the q parameter is shown to be the regularizing parameter. 

Quantum groups have played a prominent role during recent years in the quantum 
integrable system, the rational conformal field theory, the knot theory, and so on. 

A well known approach to finding them is the algebraic deformation of the Poisson 
Lie group [1,2]. Thus it is said that the Lie algebra is quantized. Another approach 
is quantizing the space of functions on a Lie group, which is dual to a Lie algebra [3]. 
The two approaches are mutually dual [4]. In contrast, the Hall algebra [5] and 
endomorphisms on non-commutative coordinates [6] have been used. 

Most approaches are restricted to a mathematical construction which is not started 
from a physical action and quantization. Thus we will find an action, conditions and 
a structure which give the quantum group. 

The generators of a quantum group will be written as compositions of a q-Heisenberg 
algebra (or q-bosons) [7-91. So we will concentrate on the q-Heisenberg algebra. 

The actions for two q-Heisenberg algebras are constructed from extension of a 
contact metric structure of a Heisenberg group manifold to the corresponding line 
bundle. ,The q-Heisenberg algebras are obtained by a canonical quantization and 
regularization. The q parameter is shown to be the regularizing parameter. 

The q-Heisenberg algebra is generated by (a, a', N) with a deformation parameter 
q satisfying 

aqN = qqNa (1) a y  - 4  q a  

(2 )  aa+-q"a'a=q * N  . 

a+a,  N = N o = a i a o  [ao, a i ]  = 1. (3) 

1 N -  -1 N t 

The algebra becomes the Heisenberg algebra (bosons). in the limit q + 1 as follows 

The algebra (3) is obtained by a canonical quantization o f  phase variables ( p ,  x)  of 
dimension two with the action one-form 

A = f (  p dx - x dp). (4) 

Extension to the higher dimensional phase space can be done similarly by introducing 
indices. 
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To find a q-Heisenberg algebra, we take an action form related with the Heisenberg 
group manifold by extending (4). The manifold has three invariant one-forms as 
candidates of action one-fonn. Only one of them extends the A of (4) to three- 
dimensional phase space ( p ,  x, 0 )  

with a topological constraint 

d d d Z 0 .  (6) 
The action has three kinds of symmetries: a local U( 1) gauge symmetry, reparametriz- 
ation and contact diffeomorphisms [10,11]. Apparently, the d of (5) is equal to the 
A of (4) when the 'total derivative term dB is dropped by using a U(1) gauge 
transformation. But we cannot take such a process in order to preserve the toplogical 
constraint (6). The d is called the canonical contact one-form [Ill.  

Conversely, from the contact one-form we can reconstruct the Heisenberg group 
manifold by introducing a metric on a three space which is compatible with d. The 
metric is well known as the Sasaki metric 1121. The A of (4) is considered as a U(1) 
gauge field on the metric. The basis of the tangent space compatible with d forms the 
Heisenberg Lie algebra. We obtain the Heisenberg group manifold that has the d as 
one of its invariant one-forms. 

At first, the Poisson bracket, related with (5), is expected to be obtained from a 
Kinilov-Kostant symplectic structure on the coadjoint orbits of the group, and is 
equivalent to that form (4). But to fit the topological constraint (6), we take the Arnold 
form that has a new scaling variable A > 0 as a conjugate of 0 [ 111. The corresponding 
action one-form o is defined on the four-dimensional phase space ( p ,  x, A, 8 )  as follows 

(7) 
A 
2 

w = A d  =- ( p  dx --x dp) - A  de. 

In this case, A is taken as a Lagrange multiplier of value A = 1. But the Arnold form 
is not suitable to define a Hilbert space after quantizing. We will comment briefly on 
this later. 

We change this further by introducing complex variables (2, b) as 

A = ztz B=argz 

b=-(x+ip) 
1 

bt=- (x-ip). 
1 
a a 

Here we consider the Heisenberg group manifold as a U(1) principal bundle, and 
define the associated line bundle. The variable z represents the fibre coordinate of the 
line bundle [12,13]. The invariant one-form (7) is modifie'd into two kinds 

1 
2i 

-Y+=- (zb d(ztbt) +Z dz'- (e)) 

= A ( f ( p  dx-x  dp) -de) -AH dB 

1 
2i 

Z-=-(z'b d(zb')+zdzt-(e)) 

= h(+(p  dx - X  dp) - de) +AH de. 
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The symbol (e) means antisymmetrizing under exchange of variables, and H i s  the 
oscillator Hamiltonian 

H = bib =f(p2+x'). (11) 
The modified canonical action one-form (9) and (10) are equivalent to the symplectic 
structure on the line bundle. A similar approach has been used to define a symplectic 
structure on a line bundle related to an expansion of [13]. It is interesting that the H 
in each second step is contained in the pure action-angle coordinates of each first step. 
The 6 in each second step act like a time, so it is called the geometric time. The 
geometric (6) and the extemal times are in the same direction on 3+, but oppositely 
on 3-. Thus we can expect two types of q-Heisenberg algebras related to the orientation 
of the group manifold, which are characterized by the geometric time 6. 

Let us proceed to quantize by using 3+ first. The canonical commutators are read 
from 3+ (except (14)) as follows. 

[z, 2'1 = 1 (12) 

[5bt ]  = [ z t ,  61 = O  (14) 

1561 = [zt, bt] = 0 (13) 

[zb, zt6'l= 1. (15) 

[z, b'] = bt [zt,6]=-b. (16) 

For the Arnold form, (14) should be changed to 

But the Arnold form does not show a Hilbert space for pure bt and 6. Thus we require 
(14). 

The states for z and Z' are defined such that 

(171 
1 

210) = 0 In)=--(z+)"lO). 

The state In) is independent of 6 and b' (from (13) and (14)). It is dependent on the 
geometric time (e) and the Lagrangian multiplier (A).  So we should constrain them 
out by taking an expectation value, because the real dynamical variables are bt and 
6. Thus the commutator (15), after taking the expectation for the fibre elements, will 
be an effective form. 

But the expectation value for all states of In) is divergent normally. We regularize 
it by introducing a parameter p such that 

1 m m m 

(nllln)= I + z ( ~ ) =  c e+"=- 
" = O  0=0 " = O  1 - e-4 ' 

The Z ( p )  is well known as the partition function or a U(1) character. We can naturally 
expect the form in the theory itself by incorporating the oscillator Hamiltonian h = z'z 
properly. The effective commutator of having the q parameter, which appears in [7], 
is followed 

q2bbt-bt6 =q2-1 (19) 

q2 =ep. (20) 
Thus the first part relation of (2)  can be seen by defining a and at 

a = ( q  - q-l)-1/2bqN/Z 
-1 -112 N12bt (21) 

a'=(q-q  ) 4 
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where 

-@V=ln(l-b'b). (22) 

As a result, we obtain the q-oscillatorrelating to the same time flow, and the q-parameter 
is interpreted as a regularization. The corresponding Hilbert space [[?I]) n =0, 1,2, .  . . 
for b and b' is defined 

[n] = 1 -q-'". 

Similarly we can perform quantization by using 2-. The difference is in the 

[ztb, zb'] = 1. (24) 

q-2bb'-btb= l-q-'. (25) 

The equation is different from (19), replacing q by q-'. We obtain the second part of 
relation (2) by defining 

commutator 

The q-deformation is obtained after similar steps 

a=(q-q-l)-l/Zbq-N/Z 
-1  -1/2 -N/Zbt (26) 

a'=(q-q ) 4 

The corresponding Hilbert space is similarly defined. 
As results, we construct two kinds of q-Heisenberg algebras related with the 

orientations ofthegeometrictime (e). Our formalism contains explicitlythe regularizing 
parameter as a q deformation, which normally vanishes. But we expect that it gives a 
kind of physical meaning to the q-parameter. 

This work was supported in part by a NON-DIRECTED RESEARCH FUND, Korea 
Research Foundation, 1991. 
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